Cell Growth Problem Set 1

- A) The data available in an Excel spreadsheet "Cell Growth Problem A data" were collected for cell dry mass concentration (X) versus time (t) for bacteria growing in the presence of an inhibitor (I).
 - i) For each I concentration, calculate the specific growth rate (h⁻¹) and doubling time (minutes).
 - ii) Calculate the value of K_I using the Monod-like "noncompetitive" inhibition model. Do this by plotting (1-R) vs. R[I] ("x" vs. "y") where $R = \mu/\mu_{MAX}$. Note that μ_{MAX} is the true maximum specific growth rate without inhibitor.
- B) When growing on glucose as the sole carbon and energy source, a bacterial species has a maintenance coefficient of 0.063 g/gh and a (true) cell mass yield coefficient of 0.43 g/g. Assuming no glucose is converted into a extracellular product,
 - i) What is the specific glucose consumption rate when the specific growth rate is $0.70 \, h^{-1}$? $0.05 \, h^{-1}$?
 - ii) What fraction of the substrate goes toward maintenance when the specific growth rate is 0.70 h⁻¹? 0.05 h⁻¹?
 - iii) How fast is glucose being consumed in a 100 liter reactor containing 20 g/L cells growing at 0.70 h⁻¹ (kg/h)?
- C) The following data were obtained for the growth rate of *Grandia profius* as a function of temperature. Calculate the values for the two Ratkowsky parameters (b and T_O). For what range is the Ratkowsky equation suitable?

μ (h ⁻¹)
0.000
0.005
0.040
0.120
0.220
0.380
0.550
0.770
1.030
0.860
0.520
0.220